# Predicting Optimal Meal Kit Choices: a Comparison of Methods

By Robert N. Nakano October 2, 2020

**Committee Members** 

Olga Korosteleva, Ph.D. (Chair) Kagba N. Suaray, Ph.D. Alan Safer, Ph.D

## **Outline:** Predicting Optimal Meal Kit Choices

#### Meal Kits

#### Survey

- Survey Design
- IRB Process
- Descriptive Statistics

#### Algorithms

- Collaborative Filtering
- Content-based Filtering
- Deep Learning Approaches
- Results

#### **Future Work**

## **Background**

Meal Kit Services



#### What is a mealkit?

Meal kits are boxes containing premeasured and packaged ingredients for one or more recipes that are delivered to a buyer's address, oftentimes on a subscription basis.







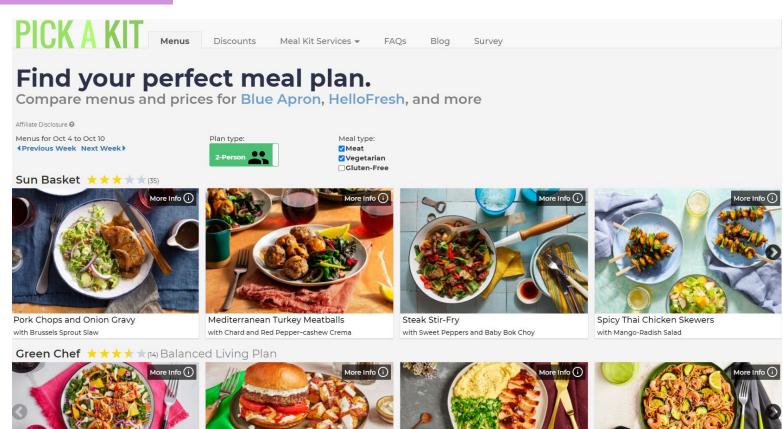











# PICK A KIT =





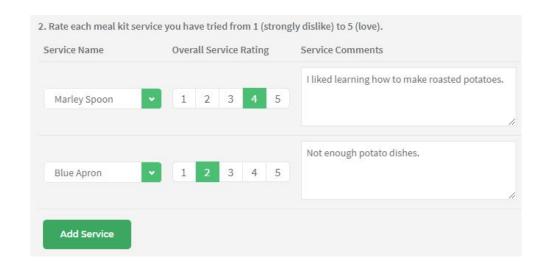


## **Pickakit.com**



\_

## **Problem Statement**


# Which meal kit service is best for each individual?

## **Approach Overview**

- 1. Run a survey to collect ratings (1-5) for meal kit services and other data
- 2. Use data to test ratings prediction algorithms

## **Evaluation Metrics**

- 1. Accuracy- RMSE, and MAE
- 2. Prediction Coverage
- 3. Computation Time



## **Survey**

## **Survey Design**

Nonprobability Survey

Recruitment over a 24 week period in early 2020

#### Recruitment from various channels:

- Personal networks
- Survey sharing groups
- Interest groups
- Facebook
- Twitter
- Reddit
- Pinterest
- Pick a Kit

Capture preferences on users for meal kit services (i.e. ratings 1-5)

Learn about other user preferences that may influence meal kit decisions

Provide options for further research

## **Survey Design-Architecture**

Data stored on MongoDB NoSQL databases

JSON format

Survey.js

Hosted on Pick a Kit

# Pickakit.com

**PICK A KIT** Menus Discounts Meal Kit Services ▼ FAOs Blog Survey Page 1 of 3 Welcome Welcome to the Pick a Kit survey on meal kits, a research project in collaboration with California State University, Long Beach. Your response will help us figure out the best meal kit recommendations for each person. The basic version of the survey takes about 4 minutes. After taking the survey, we would love to share the results with you! To continue, please read and agree to the Notice of Informed Consent and the Pick a Kit Privacy Policy. I am 18 years of age or older, and understand and agree to the Notice of Informed Consent. I understand and agree to Pick a Kit's Privacy Policy. Next

## **The IRB Process**

"The Institutional Review Board (IRB) is an administrative body established to protect the rights and welfare of human research subjects recruited to participate in research activities conducted under the auspices of the institution with which it is affiliated."

## When do you need to submit to IRB?

## Human Subject + Research Activity

Project is considered research activity when:

- collecting information through interaction with individuals
- analyzing identifiable private information (individuals can directly or indirectly be identified)
- not business related

## **Step 0: Figure out your research project**

- Research goals
  - o Interests?
  - Target Population?
    - Access and Recruitment?
- Resources
  - 0 \$
  - o Time
- Team
  - Advisor
  - o Committee
  - Other Researchers
  - Industry Counterparts

17

## Fields of Study

Recommender Systems Food Sciences and Nutrition

## Goal:

Design and administer a survey on meal kit preferences

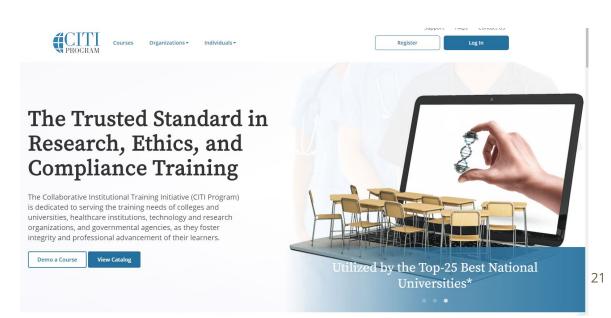
Investigate methods to predict optimal meal kit choices

Nonprobability Survey

## **Step 1: Visit CSULB IRB Website**

• Instructions:

https://www.csulb.edu/office-of-resear ch-and-sponsored-programs/institutio nal-review-board-irb


## **3 Types of IRB Applications**

- Submission to the IRB is required. Which IRB Application should I submit?
- IRB Application for <u>Existing and Secondary Data (DOC)</u>
  - For Projects involving:
    - Secondary analysis of identifiable data
    - Retrospective and/or prospective secondary data analysis
- IRB Application for <u>Administrative and Limited Preview (DOC)</u>
  - **■** For Projects involving:
    - Surveys, interview and focus groups (release of data will not place subjects at harm)
    - Benign behavioral interventions with adults
    - No children or other vulnerable populations
- IRB Application for <u>Expedited and Standard Review (DOC)</u>
  - **■** For Projects involving:
    - Interventions and assessments (minimal and greater than minimal risk)
    - Behavioral interventions
    - Inclusion of children or other vulnerable populations

20

## **Step 2: Complete Citi Training**

- Social & Behavioral Basic/Refresher Course
- 10 hours
- Free for CSULB students



#### THE BELMONT REPORT

Office of the Secretary

Ethical Principles and Guidelines for the Protection of Human Subjects of Research

The National Commission for the Protection of Human Subjects of Biomedical and Behavioral Research

April 18, 1979

AGENCY: Department of Health, Education, and Welfare.

ACTION: Notice of Report for Public Comment.

SUMMARY: On July 12, 1974, the National Research Act (Pub. L. 93-348) was signed into law, there-by creating the National Commission for the Protection of Human Subjects of Biomedical and Behavioral Research. One of the charges to the Commission was to identify the basic ethical principles that should underlie the conduct of biomedical and behavioral research involving human subjects and to develop guidelines which should be followed to assure that such research is conducted in accordance with those principles. In carrying out the above, the Commission was directed to consider: (i) the boundaries between biomedical and behavioral research and the accepted and routine practice of medicine, (ii) the role of assessment of risk-benefit criteria in the determination of the appropriateness of research involving human subjects, (iii) appropriate guidelines for the selection of human subjects for participation in such research and (iv) the nature and definition of informed consent in various research settings.

The Belmont Report attempts to summarize the basic ethical principles identified by the Commission in the course of its deliberations. It is the outgrowth of an intensive four-day period of discussions that were held in February 1976 at the Smithsonian Institution's Belmont Conference Center supplemented by the monthly deliberations of the



Completion Date 01-Dec-2019 Expiration Date 30-Nov-2022 Record ID 34321339

#### Robert Nakano

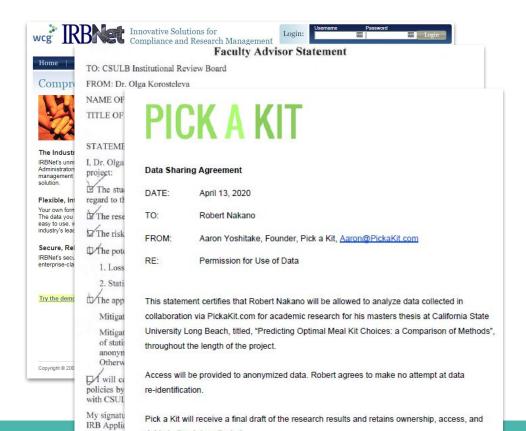
Has completed the following CITI Program course:

Social & Behavioral Research - Basic/Refresher (Curriculum Group)

Social & Behavioral Research - Basic/Refresher (Course Learner Group)

1 - Basic Course

Under requirements set by:


California State University, Long Beach

Collaborative Institutional Training Initiative

Verify at www.citiprogram.org/verify/?wa5af59f5-5ba5-4780-b0fe-8ab669f9091e-34321339

## **Step 3: Submit Required Documents**

- 1. Citi Training Certificate
- 2. Permission Letters
- 3. Faculty Advisor Letter
- 4. Online Survey
- 5. Consent Notice
- 6. Recruitment Material



24

#### Version: 01/02/2018

## IRB Application for Administrative & Limited Review

#### Projects involving less than minimal risk

**Instructions:** Complete all questions regarding the proposed project. Use as much space as necessary and be specific. Refer to the end of the document for term definitions. Check boxes can be filled in by clicking inside the box once.

**IMPORTANT:** NO ACTIVITY MAY BEGIN ON THIS PROJECT UNTIL THE PRINCIPAL INVESTIGATOR HAS RECEIVED FORMAL NOTIFICATION FROM THE CSULB IRB THAT THE PROJECT HAS BEEN ACKNOWLEDGED AS A QUALITY ASSESSMENT/QUALITY IMPROVEMENT PROJECT UNDER ADMINISTRATIVE REVIEW.

#### 1. BASIC INFORMATION

| PI's Name (Last, First, Degree)            | Click or tap here to enter text.            |  |  |
|--------------------------------------------|---------------------------------------------|--|--|
| Telephone Number                           | Click or tap here to enter text.            |  |  |
| Email                                      | Click or tap here to enter text.            |  |  |
| CITI Member ID #                           | Click or tap here to enter text.            |  |  |
| Completion of CITI Social & Behavioral     | ☐ Yes ☐ No ☐ Not Sure                       |  |  |
| Basic/Refresher Course (Check one)         |                                             |  |  |
| Department                                 | Click or tap here to enter text.            |  |  |
| Affiliation                                | ☐ Student* ☐ Staff ☐ Faculty ☐ Other        |  |  |
| *If you are a student, please complete the | information below for your Faculty Advisor: |  |  |
| Faculty Advisor Name                       | Click or tap here to enter text.            |  |  |
| Email                                      | Click or tap here to enter text.            |  |  |
| Telephone Number                           | Click or tap here to enter text.            |  |  |

#### 2. PROJECT SUMMARY

| Title of Project                                                                                   |
|----------------------------------------------------------------------------------------------------|
| Click or tap here to enter text.                                                                   |
| Describe the purpose of the project. Provide context to the importance of the research and explain |

- 1. Basic Information
- 2. Project Summary
- 3. Risks and Mitigations
- 4. Data Access
- 5. Funding
- 6. Results
- 7. Additional Personnel
- 8. Investigator Assurance
- 7 page template
- Attach relevant documents

25

# Step 4: Make Necessary Modifications There may be mandatory changes based on ethics and compliance.

CSULB IRB Application for Existing and Secondary Data

Version: 01/02/2018

IRB Application for Existing and Secondary Data

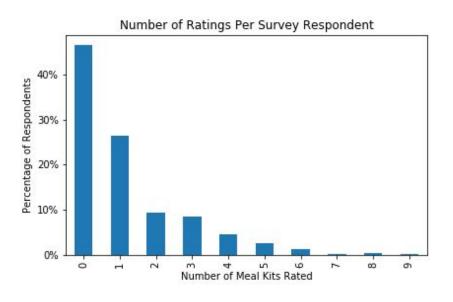
Instructions: Please confirm that the research activities meet the definition of research with human subjects (the data has identifiers or links to identifiers). Fill out the form completely. Any incomplete forms will be returned. Check boxes can be filled by clicking once inside the box. Please include all applicable supporting documents for this submission such as permission letters and faculty supervisor letter.

#### 1. Basic Information

| Principal Investigator: | Click or tap here to enter text.           |  |
|-------------------------|--------------------------------------------|--|
| CITI Member ID Number:  | Click or tap here to enter text.           |  |
| Department:             | Click or tap here to enter text.           |  |
| Telephone Number:       | Click or tap here to enter text.           |  |
| Email:                  | Click or tap here to enter text.           |  |
| Affiliation:            | ☐ Student* ☐ Faculty ☐ Staff ☐ External PI |  |

## **Step 5: Final Approval**

- An email notice is sent updating your status
- Updates to the research require updates to the IRB application

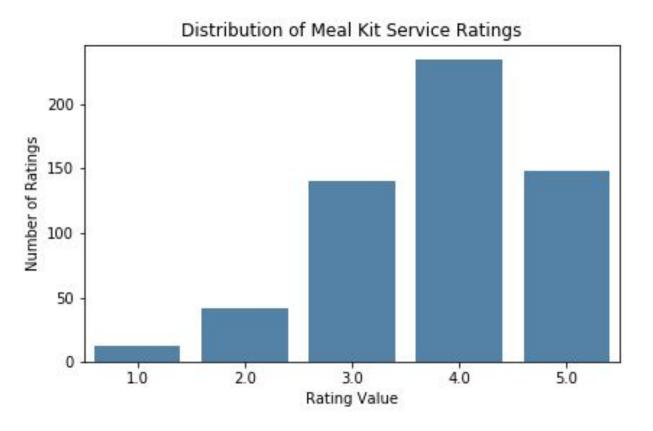

# **Survey Results Descriptive Statistics**

### **Survey Respondents**

499 survey respondents over 24 weeks

267 respondents rated meal kits

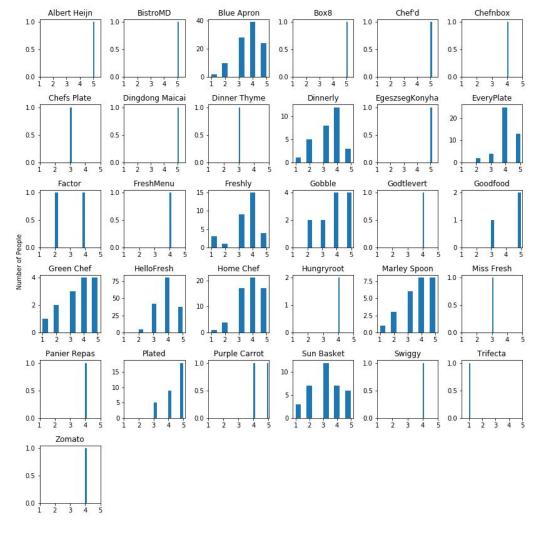
After data cleaning, the resulting user rating matrix contains 577 ratings, 360 features, and 1 target variable.



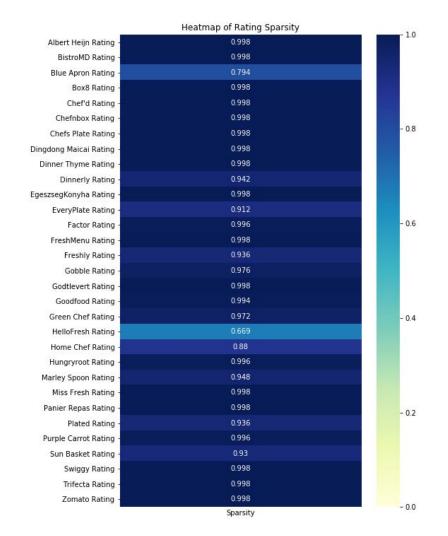


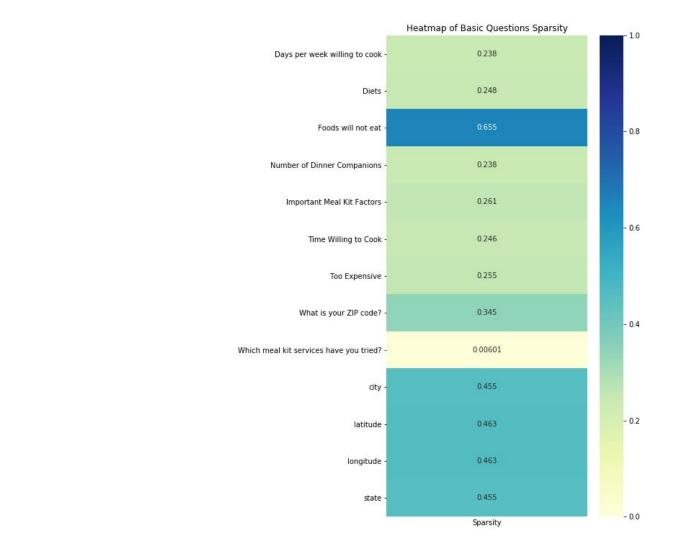

# Top 10 Number of Meal Kit Survey Respondents in United States per Capita

| Rank | State                | Respondents per<br>Million of<br>Population |  |
|------|----------------------|---------------------------------------------|--|
| 1    | Maine                | 2.98                                        |  |
| 2    | Massachusetts        | 2.47                                        |  |
| 3    | New Hampshire        | 2.21                                        |  |
| 4    | Washington           | 1.71                                        |  |
| 5    | New York             | 1.54                                        |  |
| 6    | District of Columbia | 1.42                                        |  |
| 7    | Wisconsin            | 1.37                                        |  |
| 8    | North Dakota         | 1.31                                        |  |
| 9    | Pennsylvania         | 1.25                                        |  |
| 10   | Missouri             | 1.14                                        |  |


• Northeastern United States shows higher participation per capita.

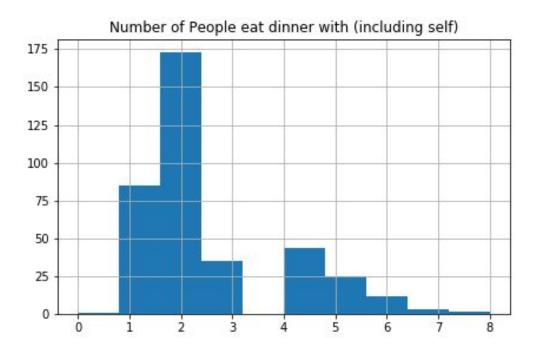


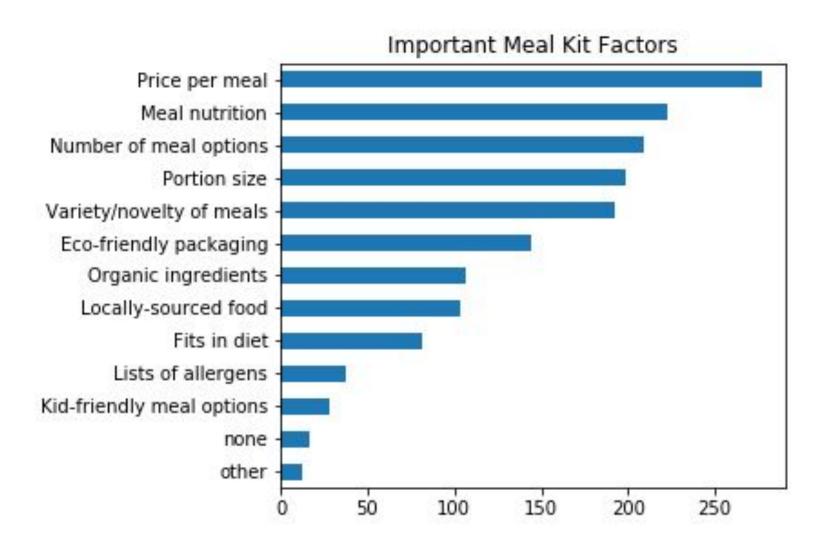

499 survey respondents276 respondents included meal kit service ratings


| Meal Kit Service | Rating<br>Mean | Rating<br>Count | Rating<br>Std dev. |
|------------------|----------------|-----------------|--------------------|
| Plated           | 4.41           | 32              | 0.756              |
| Goodfood         | 4.33           | 3               | 1.155              |
| EveryPlate       | 4.11           | 44              | 0.754              |
| HelloFresh       | 3.92           | 165             | 0.776              |
| Gobble           | 3.83           | 12              | 1.115              |
| Home Chef        | 3.82           | 60              | 0.983              |
| Marley Spoon     | 3.73           | 26              | 1.151              |
| Blue Apron       | 3.71           | 103             | 0.996              |
| Green Chef       | 3.57           | 14              | 1.284              |
| Freshly          | 3.50           | 32              | 1.078              |
| Dinnerly         | 3.38           | 29              | 1.015              |
| Sun Basket       | 3.17           | 35              | 1.200              |

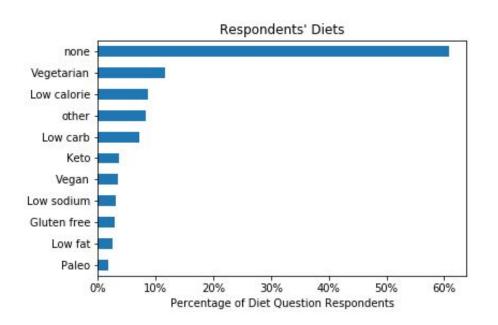
## Meal Kit Service Ratings Histograms




## Data Sparsity



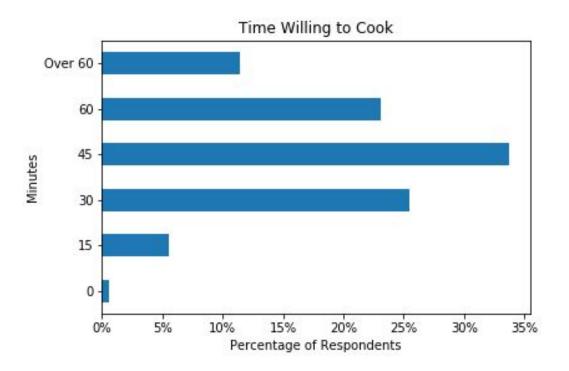




### **Dinner Companions**

Many respondents eat dinner with 1 other person



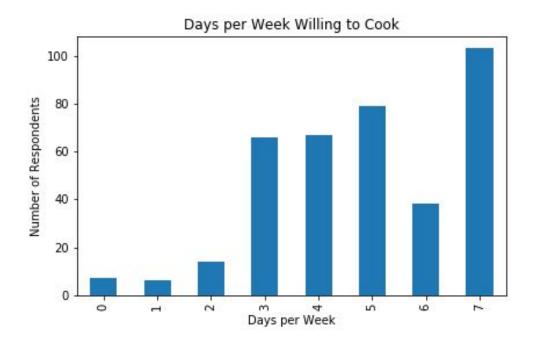


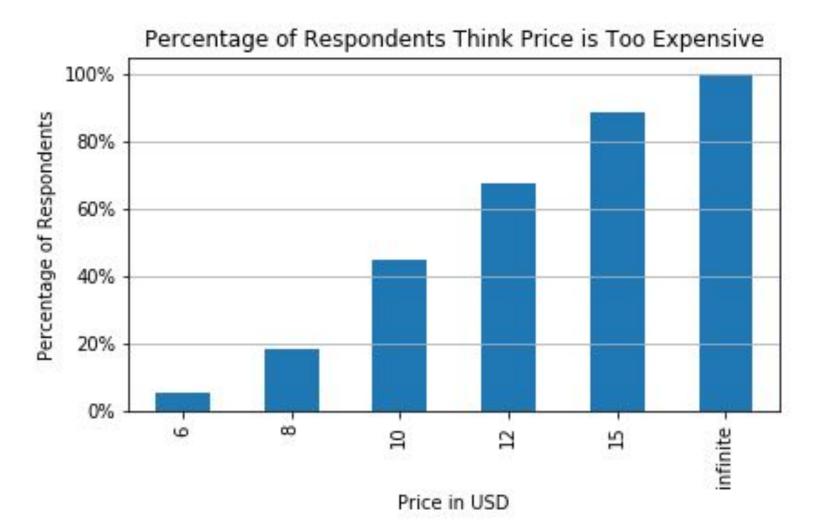

### **Diets of Respondents**



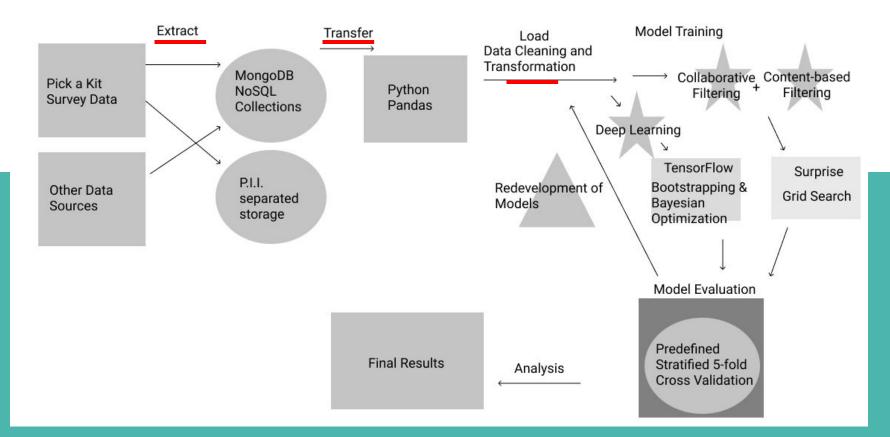
| Diet        | Count | Percentage |
|-------------|-------|------------|
| No Diet     | 228   | 60.8%      |
| Vegetarian  | 44    | 11.7%      |
| Low Calorie | 33    | 8.8%       |
| Other       | 31    | 8.3%       |
| Low Carb    | 27    | 7.2%       |
| Keto        | 14    | 3.7%       |
| Vegan       | 13    | 3.5%       |
| Low Sodium  | 12    | 3.2%       |
| Gluten Free | 11    | 2.9%       |
| Low Fat     | 10    | 2.7%       |
| Paleo       | 7     | 1.9%       |

### **Cooking Time**


45 minutes was the most common time willing to cook




### **Cooking Frequency**


Many respondent reported willingness to cook every day of the week

Cooking between 3-5 days per week was also a common response





### Methodology

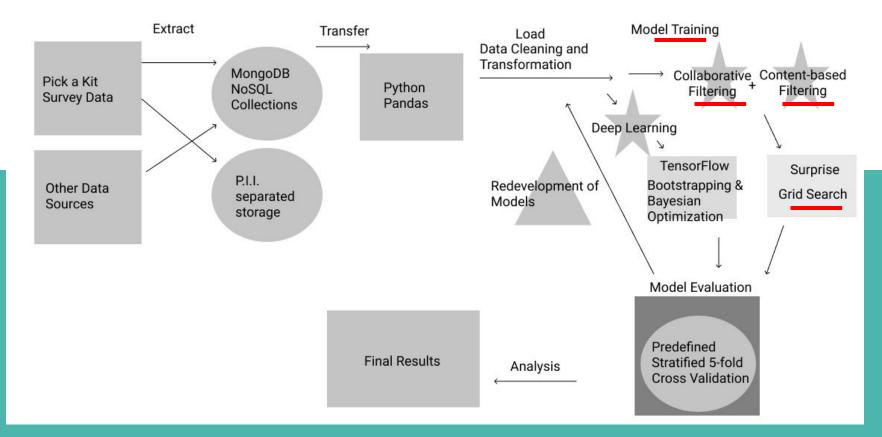


### **Preprocessing**

- Empty Responses Dropped
- Ordinal Encoding of User and Item Variables
- Median Imputation
- Binary Encoding of categorical variables
- Zipcodes-> Latitude and Longitude (Numeric)
- 5 stratified predefined folds for

Cross-Validation

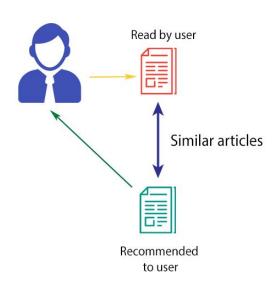
- Python
- Google Colab
- Pandas
- Numpy
- Sci-Kit Learn


### **Prediction Matrix Data Frame**

|     | _id | service         | rating |     | Days<br>per<br>week<br>willing<br>to cook | Time<br>Willing<br>to Cook | Too<br>Expensive | latitude | longitude | Which<br>meal kit<br>services<br>have you<br>tried?<br>_Blue<br>Apron | Which<br>meal kit<br>services<br>have you<br>tried?<br>_Dinnerly | kit<br>services | Which<br>meal kit<br>services<br>have you<br>tried?<br>_Freshly | services |
|-----|-----|-----------------|--------|-----|-------------------------------------------|----------------------------|------------------|----------|-----------|-----------------------------------------------------------------------|------------------------------------------------------------------|-----------------|-----------------------------------------------------------------|----------|
| 179 |     | Albert<br>Heijn | 5.0    | 2.0 | 7.0                                       | 45.0                       | 8.0              | 0.00     | 0.00      | 0                                                                     | 0                                                                | 0               | 0                                                               | 0        |
| 607 |     | BistroMD        | 5.0    | 1.0 | 6.0                                       | 15.0                       | 12.0             | 0.00     | 0.00      | 0                                                                     | 0                                                                | 1               | 0                                                               | 0        |
| 612 |     | Blue<br>Apron   | 4.0    | 2.0 | 5.0                                       | 45.0                       | 12.0             | 0.00     | 0.00      | 0                                                                     | 0                                                                | 0               | 0                                                               | 0        |
| 614 |     | Blue<br>Apron   | 3.0    | 4.0 | 4.0                                       | 45.0                       | 15.0             | 34.08    | -118.14   | 1                                                                     | 0                                                                | 0               | 0                                                               | 0        |
| 617 |     | Blue<br>Apron   | 5.0    | 2.0 | 5.0                                       | 45.0                       | 12.0             | 0.00     | 0.00      | 1                                                                     | 0                                                                | 0               | 0                                                               | 1        |
| 618 |     | Blue<br>Apron   | 4.0    | 3.0 | 2.0                                       | 60.0                       | 10.0             | 40.56    | -105.13   | 1                                                                     | 0                                                                | 0               | 0                                                               | 1        |
| 620 |     | Blue<br>Apron   | 4.0    | 1.0 | 5.0                                       | 45.0                       | 12.0             | 38.90    | -92.40    | 1                                                                     | 1                                                                | 0               | 1                                                               | 0        |
| 621 |     | Blue<br>Apron   | 4.0    | 2.0 | 4.0                                       | 30.0                       | 15.0             | 37.32    | -121.93   | 1                                                                     | 0                                                                | 0               | 0                                                               | 0        |
| 626 |     | Blue<br>Apron   | 3.0    | 2.0 | 3.0                                       | 60.0                       | 10.0             | 33.74    | -117.81   | 1                                                                     | 0                                                                | 0               | 0                                                               | 0        |
| 630 |     | Blue<br>Apron   | 3.0    | 2.0 | 4.0                                       | 30.0                       | 10.0             | 33.68    | -117.83   | 1                                                                     | 1                                                                | 0               | 0                                                               | 0        |

47

### **Algorithm Groups**


Collaborative Filtering, Content-based Filtering, and Deep Learning



#### **COLLABORATIVE FILTERING**

## Read by both users Similar users Read by her, recommended to him!

#### CONTENT-BASED FILTERING



### **Meal Kit Service Examples**

#### Collaborative Filtering

| User  | Hello<br>Fresh | Blue<br>Apron | Gobble |
|-------|----------------|---------------|--------|
| Alan  |                |               | 2      |
| Olga  | 5              |               |        |
| Kagba | 2              | 3             | 5      |
| Yale  | 2              |               |        |

#### Content-based Filtering

| Item<br>Attributes | Hello<br>Fresh | Blue<br>Apron | Gobble  |
|--------------------|----------------|---------------|---------|
| Price              | \$8.99         | \$8.99        | \$12.99 |
| Avg.<br>Calories   | 740            | 800           | 1000    |

Predicts Yale will like Gobble

Predicts Olga will like Blue Apron

### **Normal predictor**

#### Algorithm Summary

Algorithm predicting a random rating based on the distribution of the training set, which is assumed to be normal. The prediction is generated from a normal distribution, estimated from the training data using Maximum Likelihood Estimation.

#### **Best Results:**

| RMSE    | MAE     | Prediction<br>Coverage | Test Time |
|---------|---------|------------------------|-----------|
| 1.35427 | 1.05111 | 1                      | 5.20E-03  |

$$\hat{\mu} = rac{1}{|R_{train}|} \sum_{r_{ui} \in R_{train}} r_{ui}$$
  $\hat{\sigma} = \sqrt{\sum_{r_{ui} \in R_{train}} rac{(r_{ui} - \hat{\mu})^2}{|R_{train}|}}$ 

### **Baseline Algorithm**

#### Algorithm Summary:

Computes baseline estimates for users and items using stochastic gradient descent or alternating least squares.

#### **Best Results:**

|     | RMSE    | MAE     | Prediction<br>Coverage | Test Time |
|-----|---------|---------|------------------------|-----------|
| ALS | 0.95308 | 0.75626 | 1                      | 8.00E-04  |
| SGD | 0.95489 | 0.76127 | 1                      | 8.00E-04  |

Equation

$$\hat{r}_{ui} = b_{ui} = \mu + b_u + b_i$$

$$\sum_{r_{ui} \in R_{train}} \left( r_{ui} - \left( \mu + b_u + b_i 
ight) 
ight)^2 + \lambda \left( b_u^2 + b_i^2 
ight)$$

{'bsl\_options': {'method': 'als', 'reg': 0.001}, 'verbose': False} {'bsl\_options': {'method': 'sgd', 'reg': 0.03}, 'verbose': False}

### Memory based Collaborative Filtering Algorithms

KNN with Means KNN with ZScore KNN Baseline Uses similarity metrics on dataset to make predictions

### **KNN** with Means

#### Algorithm Summary:

A basic collaborative filtering algorithm, taking into account the mean ratings of each user.

#### **Best Results:**

| RMSE    | MAE     | Prediction<br>Coverage | Test Time |
|---------|---------|------------------------|-----------|
| 1.02592 | 0.80950 | 0.53507                | 1.40E-03  |
|         |         |                        |           |

#### Equation

$$r_{ui} = \mu_u + \frac{\sum\limits_{v \in N^k_i(u)} sim(u,v) \cdot (r_{vi} - u_v)}{\sum\limits_{v \in N^k_i(u)} sim(u,v)}$$

{'bsl\_options': {'method': 'sgd', 'reg': 1}, 'learning\_rate': 0.5, 'k': 50, 'sim\_options': {'name': 'pearson\_baseline', 'min\_support': 5,

'user based': False}, 'verbose': False}

### **KNN** with **Z-Score**

Algorithm Summary:

Mean centered and standardized nearest neighbor ratings

#### Best Results:

| RMSE    | MAE     | Prediction<br>Coverage | Test Time |
|---------|---------|------------------------|-----------|
| 1.02191 | 0.80624 | 0.53507                | 1.40E-03  |

#### Equation

$$\hat{r}_{ui} = \mu_u + \sigma_u \frac{\sum\limits_{v \in N_i^k(u)} sim(u, v) \cdot (r_{vi} - \mu_v) / \sigma_v}{\sum\limits_{v \in N_i^k(u)} sim(u, v)}$$

$$\hat{r}_{ui} = \mu_u + \sigma_u \frac{\sum\limits_{j \in N_i^k(i)} sim(i,j) \cdot (r_{uj} - \mu_j) / \sigma_j}{\sum\limits_{j \in N_i^k(i)} sim(i,j)}$$

{'bsl\_options': {'method': 'sgd', 'reg': 1}, 'learning\_rate': 0.001, 'k': 3, 'sim\_options': {'name': 'pearson\_baseline', 'min\_support': 5,

'user\_based': False}, 'verbose': False}

### **KNN Baseline**

Algorithm Summary:

User and item baselines adjusted to KNN algorithm

#### Best Results:

| RMSE    | MAE     | Prediction<br>Coverage | Test Time |
|---------|---------|------------------------|-----------|
| 0.95080 | 0.75474 | 1                      | 4.40E-03  |

#### Equation

$$b_{ui} = \mu + b_u + b_i$$

$$r_{ui}^{n} = b_{ui} + \frac{\sum\limits_{v \in N_{i}^{k}(u)} sim(u, v) \cdot (r_{vi} - b_{vi})}{\sum\limits_{v \in N_{i}^{k}(u)} sim(u, v)}$$

$$r_{ui}^{\bullet} = b_{ui} + \frac{\sum\limits_{j \in N_u^k(i)} sim(i,j) \cdot (r_{uj} - b_{uj})}{\sum\limits_{j \in N_u^k(i)} sim(i,j)}$$

{'bsl\_options': {'method': 'als', 'reg': 2}, 'learning\_rate': 0.1, 'k': 3, 'sim\_options': {'name': 'pearson', 'min\_support': 6,

'user\_based': True}, 'verbose': False}

### Model based Collaborative Filtering Algorithms

SVD, SVD++, NMF, Slope One, and Co-Clustering

Develops models to make predictions

### **Singular Value Decomposition (SVD)**

Algorithm Summary:

Matrix factorization technique that uncovers latent factors in ratings utility matrix

#### **Best Results:**

| RMSE    | MAE     | Prediction<br>Coverage | Test Time |
|---------|---------|------------------------|-----------|
| 0.94919 | 0.75616 | 1                      | 1.20E-03  |

{'n\_factors': 160, 'n\_epochs': 20, 'biased': True, 'lr\_all': 0.005, 'reg\_all': 0.1}

$$\hat{r}_{ui} = \mu + b_u + b_i + q_i^T p_u$$

$$\sum_{r_{ui} \in R_{train}} (r_{ui} - \hat{r}_{ui})^2 + \lambda (b_i^2 + b_u^2 + ||q_i||^2 + ||p_u||^2)$$

$$b_u \leftarrow b_u + \gamma (e_{ui} - \lambda b_u)$$

$$b_i \leftarrow b_i + \gamma (e_{ui} - \lambda b_i)$$

$$p_u \leftarrow p_u + \gamma (e_{ui} \cdot q_i - \lambda p_u)$$

$$q_i \leftarrow q_i + \gamma (e_{ui} \cdot p_u - \lambda q_i)$$

where 
$$e_{ui} = r_{ui} - \hat{r}_{ui}$$

### SVD++

Algorithm Summary:

SVD algorithm with the inclusion of implicit ratings preferences

#### Best Results:

| RMSE    | MAE     | Prediction<br>Coverage | Test Time |
|---------|---------|------------------------|-----------|
| 0.94992 | 0.76033 | 1                      | 2.40E-03  |

{'n\_factors': 25, 'n\_epochs': 10, 'lr\_all': 0.01, 'reg\_all': 0.1}

$$\hat{r}_{ui} = \mu + b_u + b_i + q_i^T (p_u + |I_u|^{-\frac{1}{2}} \sum_{j \in I_u} y_j)$$

### **Nonnegative Matrix Factorization (NMF)**

#### Algorithm Summary:

Matrix Factorization technique similar to SVD, where factored matrices are composed of only positive user and item features

#### **Best Results:**

| RMSE    | MAE     | Prediction<br>Coverage | Test Time |
|---------|---------|------------------------|-----------|
| 1.02749 | 0.83511 | 1                      | 1.20E-03  |

{'n\_factors': 4, 'n\_epochs': 4, 'biased': True}

$$\hat{r}_{ui} = q_i^T p_u$$

$$p_{uf} \leftarrow p_{uf} \cdot \frac{\sum\limits_{i \in I_u} q_{if} \cdot r_{ui}}{\sum\limits_{i \in I_u} q_{if} \cdot \hat{r_{ui}} + \lambda_u |I_u| p_{uf}}$$

$$q_{if} \leftarrow q_{if} \cdot \frac{\sum\limits_{u \in U_i} p_{uf} \cdot r_{ui}}{\sum\limits_{u \in U_i} p_{uf} \cdot \hat{r}_{ui} + \lambda_i |U_i| q_{if}}$$

$$\hat{r}_{ui} = \mu + b_u + b_i + q_i^T p_u$$

### Slope One

#### Algorithm Summary:

Uses f(x) = x+b model without a coefficient (i.e. slope = 1) for simplified popularity adjusted ratings

#### **Best Results:**

| RMSE    | MAE     | Prediction<br>Coverage | Test Time |  |
|---------|---------|------------------------|-----------|--|
| 1.13234 | 0.89565 | 0.53507                | 1.40E-03  |  |

$$\hat{r}_{ui} = \mu_u + \frac{1}{|R_i(u)|} \sum_{j \in R_i(u)} dev(i,j)$$

$$dev(i,j) = \frac{1}{|U_{ij}|} \sum_{w \in U_{ij}} r_{ui} - r_{uj}$$

### **Co-Clustering**

#### Algorithm Summary:

Assigns users and items to clusters using a k-means like optimization method. If the item is unknown, the prediction is set to the user average. If both the user and the item are unknown, the prediction is set to the global average.

#### Equation

$$\hat{r}_{ui} = \overline{C_{ui}} + (\mu_u - \overline{C_u}) + (u_i - \overline{C_i})$$

#### **Best Results:**

| RMSE    | MAE     | Prediction<br>Coverage | Test Time |
|---------|---------|------------------------|-----------|
| 1.12311 | 0.88992 | 1                      | 6.00E-04  |

{'n\_cltr\_u': 2, 'n\_cltr\_i': 2, 'n\_epochs': 5}

# Content-based Filtering

**Content Based Basic** 

- Uses underlying item attributes to make predictions
- Does not use ratings data of other users

### **Meal Kit Service Profiles**

|                 | Price_min | Price_max | Price_average | Price_std_dev | Plan_Count | agg_meals | unique_meals | (carbohydrate_grams,<br>min) | (carbohydrate_grams,<br>max) |   |   |
|-----------------|-----------|-----------|---------------|---------------|------------|-----------|--------------|------------------------------|------------------------------|---|---|
| service_name    |           |           |               |               |            |           |              |                              |                              |   |   |
| Albert Heijn    | 1.74      | 9.00      | 4.69          | 1.40          | 1.0        | NaN       | NaN          | NaN                          | NaN                          |   |   |
| BistroMD        | 9.50      | 13.00     | 11.15         | 1.27          | 5.0        | NaN       | NaN          | NaN                          | NaN                          |   |   |
| Blue Apron      | 7.49      | 9.99      | 9.20          | 0.99          | 3.0        | 18.769231 | 191.0        | 26.0                         | 178.0                        | • |   |
| Box8            | 0.13      | 16.90     | 2.19          | 2.33          | 1.0        | NaN       | NaN          | NaN                          | NaN                          |   |   |
| Chefd           | NaN       | NaN       | NaN           | NaN           | NaN        | NaN       | NaN          | NaN                          | NaN                          |   |   |
| Chefnbox        | 13.56     | 13.56     | 13.56         | 0.00          | 1.0        | NaN       | NaN          | NaN                          | NaN                          |   |   |
| Chefs Plate     | 8.99      | 9.99      | 9.49          | 0.50          | 2.0        | NaN       | NaN          | NaN                          | NaN                          |   |   |
| Dingdong Maicai | NaN       | NaN       | NaN           | NaN           | NaN        | NaN       | NaN          | NaN                          | NaN                          |   |   |
| Dinner Thyme    | 2.00      | 15.00     | 11.68         | 1.66          | 1.0        | NaN       | NaN          | NaN                          | NaN                          |   |   |
| Dinnerly        | 4.29      | 4.99      | 4.72          | 0.23          | 2.0        | 19.076923 | 205.0        | 1.0                          | 160.0                        |   |   |
| EgeszsegKonyha  | NaN       | NaN       | NaN           | NaN           | NaN        | NaN       | NaN          | NaN                          | NaN                          |   |   |
| EveryPlate      | 4.99      | 4.99      | 4.99          | 0.00          | 1.0        | 16.307692 | 162.0        | 36.0                         | 110.0                        | • |   |
| Factor          | 11.00     | 15.00     | 12.54         | 1.39          | 5.0        | NaN       | NaN          | NaN                          | NaN                          |   |   |
| Freshly         | 7.99      | 11.50     | 9.37          | 1.30          | 4.0        | 38.307692 | 56.0         | 16.0                         | 68.0                         | • |   |
| FreshMenu       | 1.73      | 10.71     | 3.35          | 3.91          | 1.0        | NaN       | NaN          | NaN                          | NaN                          |   |   |
| Gobble          | 11.99     | 11.99     | 11.99         | 0.00          | 3.0        | NaN       | NaN          | NaN                          | NaN                          |   |   |
| Godtlevert      | 6.09      | 15.68     | 9.89          | 3.61          | 1.0        | NaN       | NaN          | NaN                          | NaN                          |   | 6 |
| Goodfood        | 7.48      | 9.60      | 8 47          | 0.87          | 5.0        | NaN       | MaN          | NaN                          | NaN                          |   |   |

### **Content Based Basic**

#### Algorithm Summary:

A nearest neighbors approach to contentbased filtering. Calculates the cosine similarity of item attributes with an option for unweighted similarity.

#### Best Results:

| RMSE    | MAE     | Prediction<br>Coverage | Test Time |  |
|---------|---------|------------------------|-----------|--|
| 0.99645 | 0.71229 | 0.03859                | 2.42E-01  |  |

#### Equation

$$\hat{r}_{ux} = \frac{\sum\limits_{y \in N} \sum\limits_{k_{u}(x)}^{k} cosine(\bar{X}, \bar{Y}) \cdot r_{uy}}{\sum\limits_{y \in N} \sum\limits_{k_{u}(x)}^{k} cosine(\bar{X}, \bar{Y})}$$

$$Cosine(\bar{X}, \bar{Y}) = \frac{\sum_{i=1}^{d} x_i y_i}{\sqrt{\sum_{i=1}^{d} x_i^2} \sqrt{\sum_{i=1}^{d} y_i^2}}$$

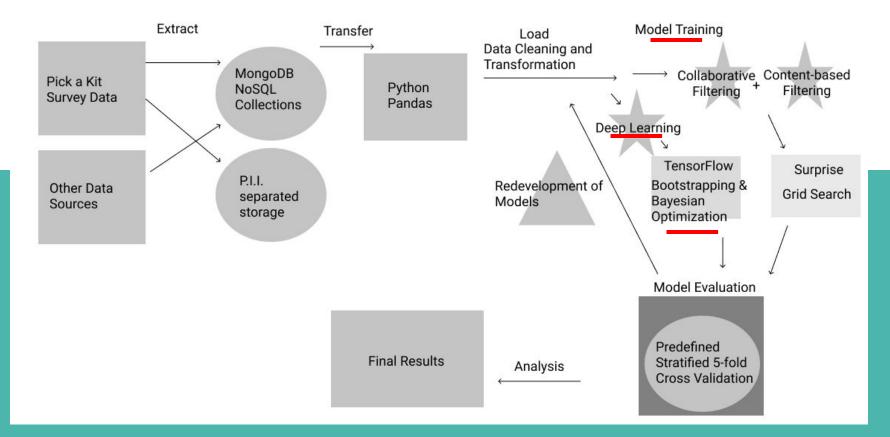
{'weights': 'cosine', 'k': 1}

# Deep Learning Approaches

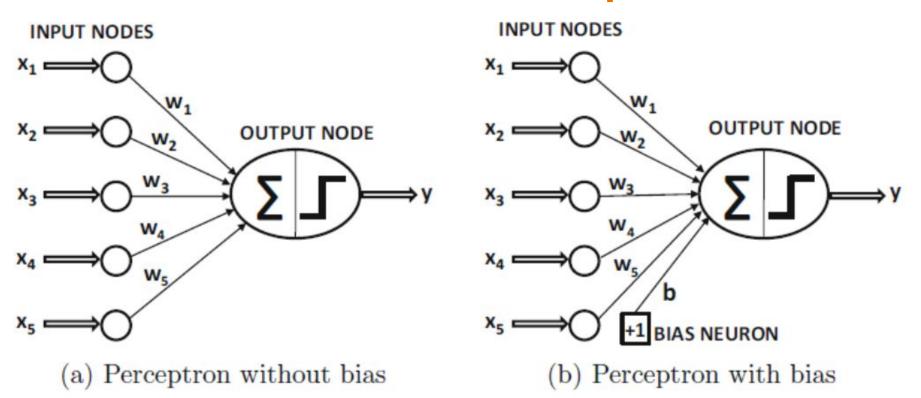
**Deep Neural Networks (DNN)** 

Two layered fully connected neural networks

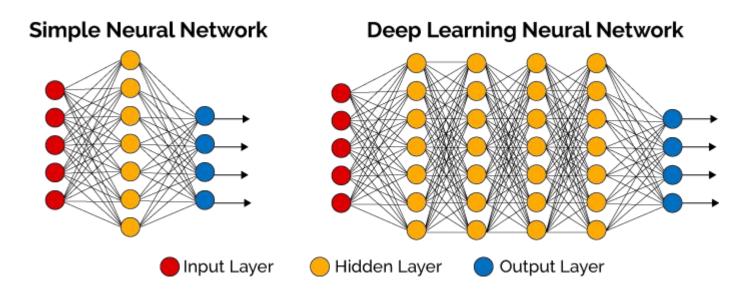
**Experts** 


TensorFlow Keras version 2.3.0

**Adam Optimization** 


PReLU and ReLU Activation Functions

**Early Stopping** 

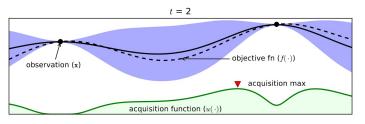

Bootstrapping 10x

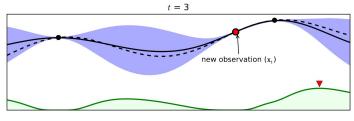


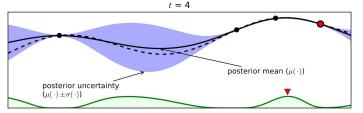
### The Basic Architecture of the Perceptron



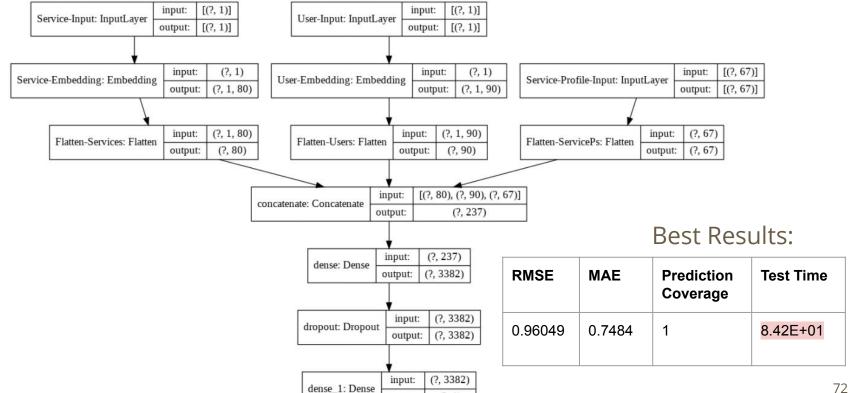
### **Neural Networks Nodes and Layers**





### **Bayesian Optimization**

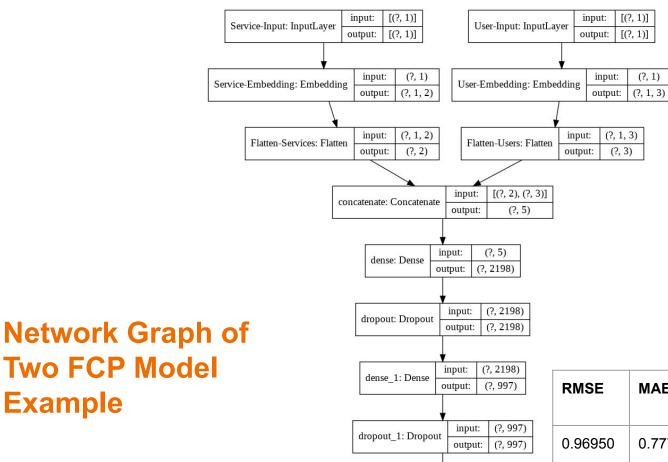

Objective Function: Average RMSE of 10 Bootstrap Iterations

#### Hyperparameters:


Data Groups: User item ratings matrix, Item Profiles, User Profiles (DNN Accommodates CF, CBF, and Hybrid methods)
Neuron Percentage
Neuron Shrink
Number of Layers
Learning Rate
Embeddings Dimensions








### **DNN Network Graph Example**



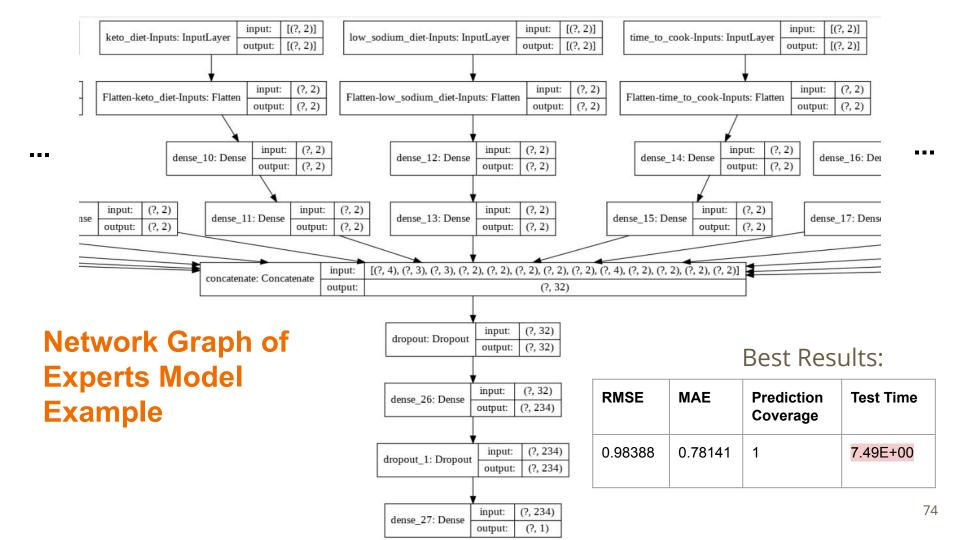
(?, 1)

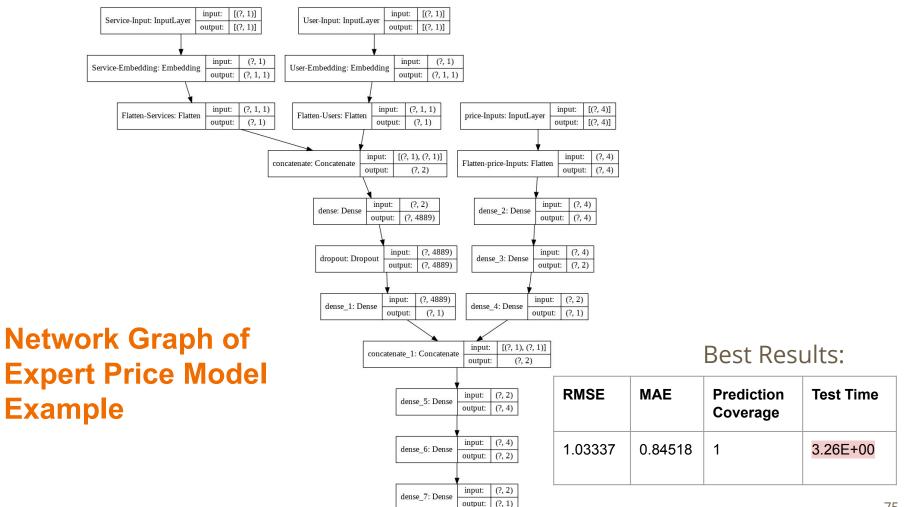
output:



(?, 997)

input:


output:

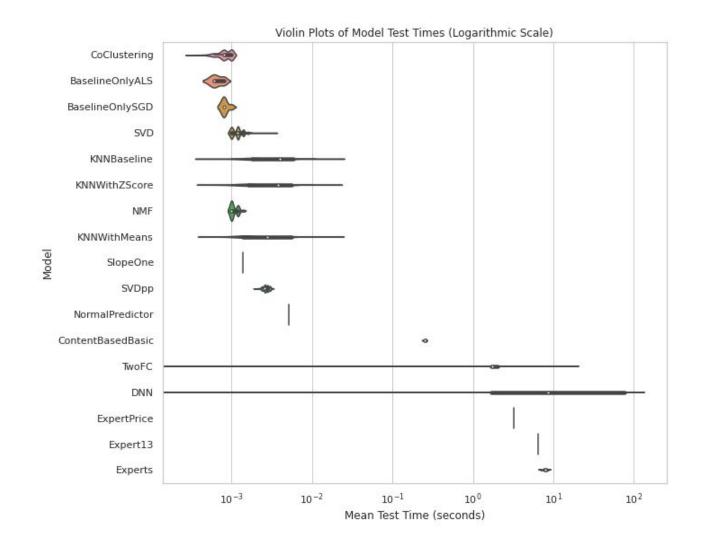

dense 2: Dense

**Example** 

#### **Best Results:**

| RMSE    | MAE     | Prediction<br>Coverage | Test Time |  |  |
|---------|---------|------------------------|-----------|--|--|
| 0.96950 | 0.77799 | 1                      | 1.68E+00  |  |  |





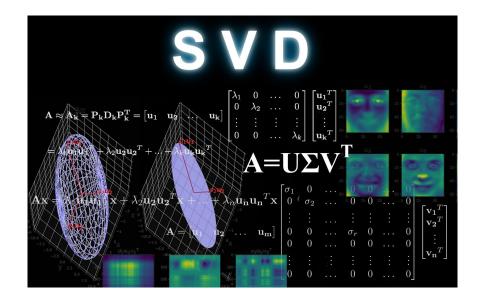

### **Results**

### **Best Model Results by Mean Test RMSE**

| Model             | Mean Test | Mean Test | Mean Test  | Prediction | Standard  | Standard  |
|-------------------|-----------|-----------|------------|------------|-----------|-----------|
|                   | RMSE      | MAE       | Time (sec) | Coverage   | Deviation | Deviation |
|                   |           |           |            |            | RMSE      | MAE       |
| SVD               | 0.9492    | 0.7562    | 0.0012     | 1.000      | 0.0189    | 0.0297    |
| SVDpp             | 0.9499    | 0.7603    | 0.0024     | 1.000      | 0.0214    | 0.0304    |
| KNNBaseline       | 0.9508    | 0.7547    | 0.0044     | 1.000      | 0.0200    | 0.0262    |
| BaselineOnlyALS   | 0.9531    | 0.7563    | 0.0008     | 1.000      | 0.0197    | 0.0257    |
| BaselineOnlySGD   | 0.9549    | 0.7613    | 0.0008     | 1.000      | 0.0251    | 0.0337    |
| DNN               | 0.9605    | 0.7485    | 84.2458    | 1.000      | 0.0110    | 0.0235    |
| TwoFC             | 0.9695    | 0.7780    | 1.6770     | 1.000      | 0.0328    | 0.0327    |
| Experts           | 0.9839    | 0.7814    | 7.4900     | 1.000      | 0.0130    | 0.0150    |
| Expert13          | 0.9920    | 0.7904    | 6.3966     | 1.000      | 0.0276    | 0.0330    |
| ContentBasedBasic | 0.9965    | 0.7123    | 0.2420     | 0.039      | 0.0097    | 0.0041    |
| KNNWithZScore     | 1.0219    | 0.8062    | 0.0014     | 0.535      | 0.0536    | 0.0500    |
| KNNWithMeans      | 1.0259    | 0.8095    | 0.0016     | 0.535      | 0.0578    | 0.0535    |
| NMF               | 1.0275    | 0.8351    | 0.0012     | 1.000      | 0.0297    | 0.0280    |
| ExpertPrice       | 1.0334    | 0.8452    | 3.2612     | 1.000      | 0.0657    | 0.0544    |
| CoClustering      | 1.1231    | 0.8899    | 0.0006     | 1.000      | 0.0474    | 0.0528    |
| SlopeOne          | 1.1323    | 0.8957    | 0.0014     | 0.535      | 0.0414    | 0.0528    |
| NormalPredictor   | 1.3543    | 1.0511    | 0.0052     | 1.000      | 0.0680    | 0.0554    |






#### **SVD** model has overall best performance

SVD performed the best in RMSE

Competitive results in MAE

Full Prediction Coverage

Fast Model



https://towardsdatascience.com/understanding-singular-value-decomposition-and-its-application-in-data-science-388a54be95d

#### **Future Work**

- 1. Dataset expansion
- 2. Ranked list testing in online production format
- 3. Diversity, serendipity, and user feedback metrics
- 4. Expanded review of algorithms
- 5. Endless possibilities

## Thank you

RobertNakano@gmail.com